Asymptotic expansion and optimal symmetry of minimal gradient graph equations in dimension 2
نویسندگان
چکیده
In this paper, we study asymptotic expansion at infinity and symmetry of zero mean curvature equations gradient graph in dimension 2, which include the Monge--Amp\`ere equation, inverse harmonic Hessian equation special Lagrangian equation. This refines research behavior, gives precise gap between exterior minimal entire case, extends classification results equations.
منابع مشابه
Adjacency metric dimension of the 2-absorbing ideals graph
Let Γ=(V,E) be a graph and W_(a)={w_1,…,w_k } be a subset of the vertices of Γ and v be a vertex of it. The k-vector r_2 (v∣ W_a)=(a_Γ (v,w_1),… ,a_Γ (v,w_k)) is the adjacency representation of v with respect to W in which a_Γ (v,w_i )=min{2,d_Γ (v,w_i )} and d_Γ (v,w_i ) is the distance between v and w_i in Γ. W_a is called as an adjacency resolving set for Γ if distinct vertices of ...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اول2 00 6 Chiral symmetry breaking in confining theories and asymptotic limits of operator product expansion
The pattern of spontaneous chiral symmetry breaking (CSB) in confining background fields is analyzed. It is explicitly demonstrated how to get the inverse square root large proper time asymptotic of the operator product expansion which is needed for CSB.
متن کاملExplicit gradient estimates for minimal Lagrangian surfaces of dimension two
We derive explicit, uniform, a priori interior Hessian and gradient estimates for special Lagrangian equations of all phases in dimension two.
متن کاملThe Asymptotic Dimension of a Curve Graph Is Finite
We find an upper bound for the asymptotic dimension of a hyperbolic metric space with a set of geodesics satisfying a certain boundedness condition studied by Bowditch. The primary example is a collection of tight geodesics on the curve graph of a compact orientable surface. We use this to conclude that a curve graph has finite asymptotic dimension. It follows then that a curve graph has proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2022
ISSN: ['0219-1997', '1793-6683']
DOI: https://doi.org/10.1142/s0219199721501108